Testosterone boosters are supplements used to improve workout performance, recovery, and the body’s natural ability to produce testosterone. T-Boosters are typically derived from herbs and other natural ingredients, so they’re generally safe to use in competition (Due to your own due diligence, however). What man on earth doesn’t want more testosterone? 
In this study, an ethical approval No. 20171008 was obtained from Ethical Committee of Qassim province, Ministry of Health, Saudi Arabia. At the beginning, a written informed consent was taken from a 30-year-old man for participation in this study. The patient came to the King Saud Hospital, Unaizah, Qassim, Saudi Arabia, with abdominal pain. He looked pale and hazy, hence, immediately admitted. A battery of lab tests was ordered by the attending physician. Moreover, abdominal ultrasound imaging was performed. The results of the tests showed high levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver injury. Other serum parameters, such as total proteins, albumin, and iron, in addition to the levels of kidney and heart enzymes were all found to be in the normal range. A complete blood count showed normal levels of red blood cells, white blood cells, and platelets. The ultrasound images of the man’s abdomen were all found to be normal as well [Figure 2]. The patient, a sportsman, described that he was taking a testosterone commercial booster product called the Universal Nutrition Animal Stak for the purpose of enhancing his testosterone profile to achieve a better performance and body composition. The attending physician decided to admit the man for 1 week. Some medications were prescribed, and the patient was discharged later after having fully recovered.
Cross-sectional studies have found a positive association between serum testosterone and some measures of cognitive ability in men (Barrett-Connor, Goodman-Gruen et al 1999; Yaffe et al 2002). Longitudinal studies have found that free testosterone levels correlate positively with future cognitive abilities and reduced rate of cognitive decline (Moffat et al 2002) and that, compared with controls, testosterone levels are reduced in men with Alzheimer’s disease at least 10 years prior to diagnosis (Moffat et al 2004). Studies of the effects of induced androgen deficiency in patients with prostate cancer have shown that profoundly lowering testosterone leads to worsening cognitive functions (Almeida et al 2004; Salminen et al 2004) and increased levels of serum amyloid (Gandy et al 2001; Almeida et al 2004), which is central to the pathogenesis of Alzheimer’s disease (Parihar and Hemnani 2004). Furthermore, testosterone reduces amyloid-induced hippocampal neurotoxity in vitro (Pike 2001) as well as exhibiting other neuroprotective effects (Pouliot et al 1996). The epidemiological and experimental data propose a potential role of testosterone in protecting cognitive function and preventing Alzheimer’s disease.
Some of these signs and symptoms can be caused by various underlying factors, including medication side effects, obstructive sleep apnea, thyroid problems, diabetes and depression. It's also possible that these conditions may be the cause of low testosterone levels, and treatment of these problems may cause testosterone levels to rise. A blood test is the only way to diagnose a low testosterone level.