Testosterone boosters are supplementary substances that can be used for the purpose of increasing testosterone levels in the blood. This study aimed to evaluate the side effects and health risks of testosterone boosters among athletes. A sportsman came to the King Saud Hospital, Unaizah, Qassim, Saudi Arabia, suffering from abdominal pain. The attending doctor requested general laboratory tests. He admitted to having consumed two courses of a testosterone booster over a period of 42 days following the instructions of the manufacturer. In total, the athlete in question consumed several courses, twice before the abdominal pain started and twice after it subsided. The blood tests and reports suggested that the commercial product consumed might negatively affect several hepatic functions and resulted in slightly increased testosterone concentrations after the fourth course. In conclusion, administration of testosterone booster products, although obtained from trusted sources, may still present some health risks. Further studies with large sample size and for a long period need to be done to confirm the current findings.
I’m a low key,thinker-type, after a test I learned my T hormone was so low I should be rigid. TRT sent my drive into negative overdrive: ambition, cunning, entrepreneurial risk, physcal and psychological risks: drugs,you name it. I was lucky it happened after 50 years of memories ’cause I missd and have problems recalling the last seven years that I was on TRT (5 pumps a day of 1.25mgs). If you’re starting, take a pictoral record at the least of your monthly life ( a flick a month).
Benefits: Ashwagandha a wonderful herb originating from India is also called the Indian Ginseng because of it’s regard as a powerful aphrodisiac. Ashwagandha roots when consumed it increases sexual powers. These sexual powers include maintaining a stronger erection, longevity, enhanced sexual feeling. It also enhances fertility by increasing sperm count and quality. Ashwaganda works by reducing prolactin and neutralizing free radicals which both leads to increased testosterone levels.
A large number of trials have demonstrated a positive effect of testosterone treatment on bone mineral density (Katznelson et al 1996; Behre et al 1997; Leifke et al 1998; Snyder et al 2000; Zacharin et al 2003; Wang, Cunningham et al 2004; Aminorroaya et al 2005; Benito et al 2005) and bone architecture (Benito et al 2005). These effects are often more impressive in longer trials, which have shown that adequate replacement will lead to near normal bone density but that the full effects may take two years or more (Snyder et al 2000; Wang, Cunningham et al 2004; Aminorroaya et al 2005). Three randomized placebo-controlled trials of testosterone treatment in aging males have been conducted (Snyder et al 1999; Kenny et al 2001; Amory et al 2004). One of these studies concerned men with a mean age of 71 years with two serum testosterone levels less than 12.1nmol/l. After 36 months of intramuscular testosterone treatment or placebo, there were significant increases in vertebral and hip bone mineral density. In this study, there was also a significant decrease in the bone resorption marker urinary deoxypyridinoline with testosterone treatment (Amory et al 2004). The second study contained men with low bioavailable testosterone levels and an average age of 76 years. Testosterone treatment in the form of transdermal patches was given for 1 year. During this trial there was a significant preservation of hip bone mineral density with testosterone treatment but testosterone had no effect on bone mineral density at other sites including the vertebrae. There were no significant alterations in bone turnover markers during testosterone treatment (Kenny et al 2001). The remaining study contained men of average age 73 years. Men were eligible for the study if their serum total testosterone levels were less than 16.5 nmol/L, meaning that the study contained men who would usually be considered eugonadal. The beneficial effects of testosterone on bone density were confined to the men who had lower serum testosterone levels at baseline and were seen only in the vertebrae. There were no significant changes in bone turnover markers. Testosterone in the trial was given via scrotal patches for a 36 month duration (Snyder et al 1999). A recent meta-analysis of the effects on bone density of testosterone treatment in men included data from these studies and two other randomized controlled trials. The findings were that testosterone produces a significant increase of 2.7% in the bone mineral density at the lumber spine but no overall change at the hip (Isidori et al 2005). These results from randomized controlled trials in aging men show much smaller benefits of testosterone treatment on bone density than have been seen in other trials. This could be due to the trials including patients who are not hypogonadal and being too short to allow for the maximal effects of testosterone. The meta-analysis also assessed the data concerning changes of bone formation and resorption markers during testosterone treatment. There was a significant decrease in bone resorption markers but no change in markers of bone formation suggesting that reduction of bone resorption may be the primary mode of action of testosterone in improving bone density (Isidori et al 2005).
An international consensus document was recently published and provides guidance on the diagnosis, treatment and monitoring of late-onset hypogonadism (LOH) in men. The diagnosis of LOH requires biochemical and clinical components. Controversy in defining the clinical syndrome continues due to the high prevalence of hypogonadal symptoms in the aging male population and the non-specific nature of these symptoms. Further controversy surrounds setting a lower limit of normal testosterone, the limitations of the commonly available total testosterone result in assessing some patients and the unavailability of reliable measures of bioavailable or free testosterone for general clinical use. As with any clinical intervention testosterone treatment should be judged on a balance of risk versus benefit. The traditional benefits of testosterone on sexual function, mood, strength and quality of life remain the primary goals of treatment but possible beneficial effects on other parameters such as bone density, obesity, insulin resistance and angina are emerging and will be reviewed. Potential concerns regarding the effects of testosterone on prostate disease, aggression and polycythaemia will also be addressed. The options available for treatment have increased in recent years with the availability of a number of testosterone preparations which can reliably produce physiological serum concentrations.
Meat. Meat, particularly beef, provides our bodies with the protein it needs to create muscle (more muscle = more T) and the fats and cholesterol to make testosterone. My meat topping of choice was sliced up chuck steak. I grilled two of them on Monday and it lasted me until the next Monday. Every now and then I’d slow-cook some ribs or brisket to use as my meat topping. My philosophy was the fattier, the better.
Recently, a panel with cooperation from international andrology and urology societies, published specific recommendations with regard to the diagnosis of Late-onset Hypogonadism (Nieschlag et al 2005). These are summarized in the following text. It is advised that at least two serum testosterone measurements, taken before 11 am on different mornings, are necessary to confirm the diagnosis. The second sample should also include measurement of gonadotrophin and prolactin levels, which may indicate the need for further investigations for pituitary disease. Patients with serum total testosterone consistently below 8 nmol/l invariably demonstrate the clinical syndrome of hypogonadism and are likely to benefit from treatment. Patients with serum total testosterone in the range 8–12 nmol/l often have symptoms attributable to hypogonadism and it may be decided to offer either a clinical trial of testosterone treatment or to make further efforts to define serum bioavailable or free testosterone and then reconsider treatment. Patients with serum total testosterone persistently above 12 nmol/l do not have hypogonadism and symptoms are likely to be due to other disease states or ageing per se so testosterone treatment is not indicated.
Vitamin D3: Vitamin D3 is actually more hormone than it is a vitamin. Vitamin D is taken in by around 10% of our diets and D3 is mostly absorbed from the sun, which can be linked to greater testosterone production. The link between the two is a result from the luteinizing hormone playing its role. Read more about how vitamin D3 effects testosterone — the evidence is staggering.
The research conducted by the American scientists has proven that this plant has a great potential to raise serum lactate, improve sports performance, enhance muscle strength, increase oxygen supply to the body tissues, maintain heart health, boost memory and concentration, restore work capacity, normalize homeostasis, and make the reaction time to a variety of visual and auditory stimuli much longer.3
at 54 testestrone was 135 so started TRH. Huge increase in energy and sex drive on 100mg cypriate every 2 weeks. My PSA rose from 1.13 to 1.63 in two years so Dr. ordered a biopsy. I am now almost 56. Came back with 1 out of 12 cores having adenocarcinoma and graded at 3×3.I am scheduled for a pelvic MRI in 4 weeks. DR wants me stay on testosterone for the time being and wants to add a med to block DHT (as I understand it.I got all this today so kind of confused what to do. Lifestyle-I rarely eat red meat maybe twice a month, run 10ks and half-marathons.how crazy is that?
Let’s do a quick review of what I shared in the introduction to this series. August of last year was a tough month for me, primarily because of a huge and grueling project we were in the midst of here on the site. I was stressed out and my sleeping, healthy eating habits, and workout regimen all suffered. At the end of the month I got my testosterone levels tested and found that my total T was 383 ng/dL and my free T was 7.2 pg/mL – close to the average for an 85-100-year-old man.
A recent study compared total and bioavailable testosterone levels with inflammatory cytokines in men aged 65 and over. There was an inverse correlation with the pro-inflammatory soluble interleukin-6 receptor, but no association with interleukin-6 (IL-6), highly sensitive CRP (hsCRP), tumor necrosis factor-α (TNF-α) or interleukin-1β (IL-1β (Maggio et al 2006). Another trial found that young men with idiopathic hypogonadotrophic hypogonadism had higher levels of proinflammatory factors interleukin-2 (IL-2), interleukin-4 (IL-4), complement C3c and total immunoglobulin in comparison to controls (Yesilova et al 2000). Testosterone treatment in a group of hypogonadal men, mostly with known coronary artery disease, induced anti-inflammatory changes in the cytokine profile of reduced IL-1β and TNF-α and increased IL-10 (Malkin, Pugh, Jones et al 2004).
The potential downside of this positive feedback loop, Coates argues, is that testosterone levels can eventually surge past optimal levels and have the opposite effect – leading to overconfidence and poor decision-making. When this happens to animals, Coates, observed, they “go out in the open, pick too many fights [and] patrol areas that are too large…Risk taking becomes risky behaviour.”
Recently my testosterone level came back at 380. and I am on max dose of 1% 8 pumps per day. The Dr. put me on 1.62% 8 pumps once a day and I will test in a few weeks to see how my level has changed. The issue is I am afraid of is putting 4 pumps a day in each shoulder and upper arm. Has anyone used this much to get there levels up? I am very fit and workout 4 times a week . The other issue is cost because 1.62% is not available 1n generic and cost has skyrocketed.
Both testosterone and 5α-DHT are metabolized mainly in the liver.[1][155] Approximately 50% of testosterone is metabolized via conjugation into testosterone glucuronide and to a lesser extent testosterone sulfate by glucuronosyltransferases and sulfotransferases, respectively.[1] An additional 40% of testosterone is metabolized in equal proportions into the 17-ketosteroids androsterone and etiocholanolone via the combined actions of 5α- and 5β-reductases, 3α-hydroxysteroid dehydrogenase, and 17β-HSD, in that order.[1][155][156] Androsterone and etiocholanolone are then glucuronidated and to a lesser extent sulfated similarly to testosterone.[1][155] The conjugates of testosterone and its hepatic metabolites are released from the liver into circulation and excreted in the urine and bile.[1][155][156] Only a small fraction (2%) of testosterone is excreted unchanged in the urine.[155]

Elevated testosterone levels have been demonstrated to increase the growth of body muscles and contribute to better activation of the nervous system, resulting in more power and strength, a better mood, enhanced libido, and many other benefits.[3] Previous researches done on the anabolic role of testosterone and its impact on muscular strength in training-induced adaptations has provided rather conflicting findings, and a positive correlation between testosterone-mediated responses and both functional performance and body composition was found.[4,5] There are a number of naturally occurring substances that can boost testosterone levels in the body. Foods containing such substances are known as testosterone-foods; and they tend to be rich in vitamins, antioxidants, and minerals like zinc, which plays a key role in testosterone production.[2,6-8]
Discussing the clinical utility of these findings, Dr. Budoff told EndocrineWeb, “in the short-term, I am going to check my patients for atherosclerosis before instituting testosterone therapy. We still need a definitive study to show whether or not heart attacks are increased by supplemental testosterone, but advancing atherosclerosis is not a good thing. These results should make us more cautious about whom we treat and what doses we use.”
Drugs.com provides accurate and independent information on more than 24,000 prescription drugs, over-the-counter medicines and natural products. This material is provided for educational purposes only and is not intended for medical advice, diagnosis or treatment. Data sources include IBM Watson Micromedex (updated 1 Mar 2019), Cerner Multum™ (updated 1 Mar 2019), Wolters Kluwer™ (updated 28 Feb 2019) and others. Refer to our editorial policy for content sources and attributions.
By passing this bill, the Congress has amended the Controlled Substances Act to include Androstenedione supplements such as 4 Androstenediol, 5 Androstenediol, etc. The original Anabolic Steroid Control Act was passed in 1990 creating a list of anabolic steroids that would be classified as "Schedule III" substances and put in the same category as drugs such as heroin and cocaine. Now, with the passage of Senate Bill 2195 (the Anabolic Steroid Control Act of 2004), they have added Androstenedione supplements to the Controlled Substances Act.
I started testosterone therapy in January 25th 2014. Original Levels 206 total and 3.5 free. Now I am 1350 total and 125 free. I can honestly say I have felt no different. Still just as tired, Sexual interest is very high as it was before therapy. I am over weight with a fat belly. My biggest complaint is feeling tired. That has not changed. My weight increased a .little since beginning therapy. Who knows??
There are two keys to incorporating fat in your diet: getting enough fat, and getting the right kinds of it. A study from 1984 (done, no doubt, with Big Brother watching) looked at 30 healthy men who switched from eating 40% fat (much of it saturated) to 25% fat (much of it unsaturated), with more protein and carbs to make up the difference in calories. After 6 weeks, their average serum testosterone, free testosterone, and 4-androstenedione (an important hormone for testosterone synthesis) all dropped significantly [6]. I think getting 40% of your calories from fat is too little – I recommend 50-70% of calories from fat, or even more in some cases.
Tribulus is a herb used in China and India for many centuries, mainly for it’s libido enhancing properties and supposed testosterone boosting properties. It enhances testosterone levels by increasing luteinizing hormone (LH) levels. LH is responsible for “telling” the body to produce testosterone. This herb contains Dioscin, protodioscin, diosgenin. These three organic component stimulate sexual performance and may be useful for a variety of sexual disorders such as low testosterone, low sexual energy and weak erections.

If you're a man who's experiencing symptoms such as decreased sex drive, erectile dysfunction, depressed mood, and difficulties with concentration and memory, and you think low testosterone may be to blame, you can have your levels tested. Since testosterone levels fluctuate throughout the day, you'll probably need more than a blood test to get a true picture of your levels.


We’ll be honest. Testosterone boosters don’t really boost. The best testosterone booster is like taking a multivitamin with extra herbs that might slightly and temporarily increase your testosterone levels. Like all supplements, finding the right testosterone booster means wading into a sea of ingredients, all promising to help. Of 133 testosterone boosters, we found only one with the right ingredients to help raise your testosterone levels: Beast Sports Nutrition - Super Test ($45.88 for 180 capsules, or $2.04 per day).
The use of anabolic steroids (manufactured androgenic hormones) shuts down the release of luteinising hormone and follicle stimulating hormone secretion from the pituitary gland, which in turn decreases the amount of testosterone and sperm produced within the testes. In men, prolonged exposure to anabolic steroids results in infertility, a decreased sex drive, shrinking of the testes and breast development. Liver damage may result from its prolonged attempts to detoxify the anabolic steroids. Behavioural changes (such as increased irritability) may also be observed. Undesirable reactions also occur in women who take anabolic steroids regularly, as a high concentration of testosterone, either natural or manufactured, can cause masculinisation (virilisation) of women.
×